Geopolymer Concrete & Carbon Footprint: What LCA Reveals

1. Introduction 🌍 Concrete production significantly contributes to global carbon emissions, primarily due to the use of cement. This study explores a sustainable alternative by estimating the carbon footprint of conventional and geopolymer concrete materials. By analyzing the environmental impact of various design components, it seeks to identify effective low-carbon alternatives. The focus lies on evaluating alkali-activated materials as replacements for cement. A comprehensive methodology is employed to assess emissions and associated uncertainties. 2. Geopolymer Concrete Components and Emission Factors 🧱 The study examines major constituents of geopolymer concrete—fly ash, GGBS, sodium hydroxide, sodium silicate, and superplasticizers. Each component's carbon footprint is assessed to mirror actual production and application conditions. This detailed evaluation helps determine where emissions are most concentrated. The analysis acknowledges the complex interaction between t...